Analysis of a suppressor mutation ssb (kinC) of sur0B20 (spo0A) mutation in Bacillus subtilis reveals that kinC encodes a histidine protein kinase.

نویسندگان

  • K Kobayashi
  • K Shoji
  • T Shimizu
  • K Nakano
  • T Sato
  • Y Kobayashi
چکیده

sur0B20 is a mutation that suppresses the effects of spo0B delta B or spo0F221 mutations in Bacillus subtilis, sur0B20 is an allele of the spo0A gene (Glu-14 to Val-14 conversion) and restores the sporulation of spo0B or spo0F mutants to the wild-type level. Here, we report the isolation of suppressor mutations of sur0B20 (ssb). One of these mutations, ssb-12, severely impairs the suppressor activity of sur0B20. A 2.5-kbp MboI fragment which complements the ssb-12 mutation was cloned by the prophage transformation method using phi CM as a vector. Nucleotide sequencing of the fragment revealed two open reading frames (orf1 and orf2). Gene disruption and complementation experiments showed that orf2 is the ssb gene. ssb was shown to encode a protein with a molecular weight of 48,846 (428 amino acid residues) showing strong similarity to transmitter kinases, especially KinA, of two-component regulatory systems. Therefore, ssb was renamed kinC. Deletion of kinC had no observable effect on sporulation. kinC transcription was induced at the onset of sporulation, probably from a sigma A-dependent promoter, and its expression was shut off at T3. DNase I protection experiments showed that the Spo0A protein binds to two adjoining sites in the kinC promoter region with different affinities. These results suggest that kinC expression might be regulated by Spo0A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis.

Phosphorylation of the transcription factor encoded by spo0A is required for the initiation of sporulation in Bacillus subtilis. Production and accumulation of Spo0A-P is controlled by histidine protein kinases and the spo0 gene products. To identify additional genes that might be involved in the initiation of sporulation and production of Spo0A-P, we isolated genes which when present on a mult...

متن کامل

Different roles for KinA, KinB, and KinC in the initiation of sporulation in Bacillus subtilis.

Activation (phosphorylation) of the transcription factor encoded by spo0A is essential for the initiation of sporulation in Bacillus subtilis. At least three histidine protein kinases are involved in the phosphorylation of Spo0A. Under some growth conditions, KinA was the primary kinase, but under other conditions, KinB had the more critical role. KinC was required for the initial activation of...

متن کامل

Phosphorylation of Spo0A by the histidine kinase KinD requires the lipoprotein med in Bacillus subtilis.

The response regulatory protein Spo0A of Bacillus subtilis is activated by phosphorylation by multiple histidine kinases via a multicomponent phosphorelay. Here we present evidence that the activity of one of the kinases, KinD, depends on the lipoprotein Med, a mutant of which has been known to cause a cannibalism phenotype. We show that the absence of Med impaired and the overproduction of Med...

متن کامل

In vivo effects of sporulation kinases on mutant Spo0A proteins in Bacillus subtilis.

The phosphorylated form of the response regulator Spo0A (Spo0A~P) is required for the initiation of sporulation in Bacillus subtilis. Phosphate is transferred to Spo0A from at least four histidine kinases (KinA, KinB, KinC, and KinD) by a phosphotransfer pathway composed of Spo0F and Spo0B. Several mutations in spo0A allow initiation of sporulation in the absence of spo0F and spo0B, but the mec...

متن کامل

A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of Bacillus subtilis

UNLABELLED Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor Spo0A~Pi (phosphorylated Spo0A) governs the flagellum-independent mechanism of social ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 177 1  شماره 

صفحات  -

تاریخ انتشار 1995